转录的原理
碱基互补配对
简述原核生物基因转录起始的机制和特点。
转录的起始由RNA聚合酶与DNA模板的启动子(promoter)结合。
经过对百种以上原核生物不同基因的启动子进行分析,发现启动子具有下列的共同点:在-10bp处有一段共有序列(consensus sequence),富含AT,即 –TATAAT-,系Pribnow等首先发现,因而称为Pribnow盒(box),再往上游-35bp的中心处又有一组保守的共有序列,即-TTGACT-。启动子邻近的结构示如图13-3。
结合过程可分为二个步骤,首先由σ因子辨认启动子的–35区,全酶与该区结合,形成疏松的复合物,此时DNA双链未解开,因而称为封闭型转录起始复合物,继而RNA聚合酶移向–10区及转录起始点,在–20区处DNA发生局部解链,形成12~17bp的单链区,RNA聚合酶与DNA结合更紧密,形成开放型转录起始复合物。以单链的模板链为模板,RNA聚合酶上的起始位点和延伸位点被相应的NTP占据,聚合酶的β亚基催化第一个磷酸二酯键的生成,σ亚基从全酶解离,形成DNA-RNA聚合酶(核心酶)结合在一起的起始延伸复合物。
基因转录的DNA的转录
在真核生物中,DNA的转录在细胞核中进行,其中rRNA的合成发生在核仁,mRNA的tRNA的合成发生在核质中。
在原核生物中,转录在细胞质的核质区进行。 转录开始不需要引物,链的延长方向也是 5′→ 3′。
每次被转录的DNA只是一个小区段,而且是其中的一条链。
我们将用作RNA合成的模板的链叫做反义链;另一条不做模板的链叫有义链。
对于整个DNA双链,每条链上有的区段用作有义链,有的区段用作反义链。
3. 原核生物参与转录的酶
RNA聚合酶
有五种亚基:a、b、b′、w、s,此外每个酶分子还含有2个Zn原子。 a2bb’ws = a2bb’w + s 全酶 核心酶 s亚基:用于识别DNA上转录的起始位点,引导核心酶结合到它上面
核心酶:由s亚基识别起始点后,由核心酶负责解开DNA双链、RNA链的延伸、恢复后面的DNA双螺旋
a亚基 —— 与启动子结合
b亚基 —— 催化磷酸二酯键的形成
b’亚基 —— 与DNA模板结合 (1)转录的启动
DNA上存在着转录的起始信号,它是特殊的核苷酸序列,称为启动子。
转录是由RNA聚合酶全酶结合于启动子而被启动的。
其机理是:s因子能识别启动子,并识别有义链,它与核心酶结合,引导核心酶定位到启动子部位。
(2)转录的起始
当聚合酶结合到启动子上后,在启动子附近将DNA局部解链,约解开17个碱基对。(酶与启动子结合的部位是AT富集区,有利于解链)
第一个核苷三磷酸(常常是GTP或ATP)结合到全酶上,形成“启动子-全酶-核苷三磷酸”三元起始复合物。
第二个核苷酸参入,连结到第一个核苷酸的3’羟基上,形成了第一个磷酸二酯键。
s因子从全酶上掉下,又去结合其它的核心酶。
(3)链的延伸
当s因子从核心酶上脱落后,核心酶与DNA链的结合变得疏松(依靠其蛋白质的碱性与酸性核酸之间的非特异性的静电引力),可以在模板链上滑动,方向为DNA模板链的 3′→ 5′,同时将核苷酸逐个加到生长的RNA链的3′-OH端,使RNA链以 5′→ 3′方向延伸。
在RNA链延伸的同时,RNA聚合酶继续解开它前方的DNA双螺旋,暴露出新的模板链,而后面被解开的两条DNA单链又重新形成双螺旋,DNA双螺旋的解开区保持约17个碱基对的长度。
新合成的RNA链能与模板形成RNA-DNA杂交区,这个杂交区也在随着RNA聚合酶的移动而不断地移动着。
(4)转录的终止
DNA分子上有终止转录的特殊信号,也是特定的核苷酸序列,称为终止子。
RNA聚合酶可以识别终止子,它在一种蛋白质 —— r因子的帮助下,终止转录,放出RNA链;有时,RNA聚合酶不需要r因子的帮助即可终止转录。
核心酶释放了RNA后,也离开DNA。
DNA上的解链区重新形成双螺旋。
两条DNA互补链转录时一般转录哪条链?机理如何?
在转录过程中以哪一条链作为模板是不一定的.要看是否具有转录起始位点.具有转录其实位点的,由DNA链的3’向5’方向聚合RNA.两条链可以转录出不同的信息,最后产生的蛋白质也不同.
遗传信息的转录和翻译机制是怎样发现的
名称而已,转录指遗传信息从DNA到mRNA,翻译指mRNA到蛋白质 ,涉及的细胞器有核糖体等.“翻译者”这种奇怪的名称还从未遇到过,至少课本没有.核糖体作为翻译者,mRNA作为被翻译的对象还说的过去.
反转录与逆转录的区别
反转录与逆转录的唯一区别后者是生物的自然发生的过程,前者是人工进行的过程。但是它们的本质是一样的。
逆转录过程的揭示是分子生物学研究中的重大发现,是对中心法则的重要修正和补充。
转录能被一些特异性的抑制剂抑制,有些抑制剂是治疗某些疾病的药物,有的则是研究转录机理的重要试剂。
一类抑制剂同时抑制DNA复制,例如:放线菌素D、纺锤菌素、远霉素、溴乙锭和黄曲霉素等。第二类抑制剂作用于RNA聚合酶,使RNA聚合酶的活性改变或丧失,从而抑制转录的进行。这类抑制剂只抑制转录,不影响复制,是研究转录机制和RNA聚合酶性质的重要工具,例如:利福平等。
扩展资料
逆转录的发现有重要的理论意义和实践意义。
(1)对分子生物学的中心法则进行了修正和补充。
(2)在致癌病毒的研究中发现了癌基因,癌基因的发现为肿瘤发病机理的研究提供了很有前途的线索。
(3)在实际工作中有助于基因工程的实施。由于目的基因的转录产物易于制备,可将mRNA反向转录形成DNA用以获得目的基因。
参考资料来源:搜狗百科-逆转录
搜狗百科-反转录
RNA的转录机制,与DNA复制有那些区别
就是电脑 剪切 与 复制的区别
生物学中,什么叫作转录?
转录(Transcription)是蛋白质生物合成的第一步,也是tRNA和rRNA的合成步骤。转录 (transcription)是以DNA中的一条单链为模板,游离碱基为原料,在DNA依赖的RNA聚合酶催化下合成RNA链的过程。与DNA的复制相比,有很多相同或相似之处,亦有其自己的特点。转录中,一个基因会被读取被复制为mRNA,就是说一特定的DNA片断作为模板,以DNA依赖的RNA合成酶作为催化剂的合成前体mRNA。在体内,转录是基因表达的第一阶段,并且是基因调节的主要阶段。转录可产生DNA复制的引物。在反转录病毒感染中也起到重要作用。转录仅以DNA的一条链作为模板。DNA上的转录区域称为转录单位(transcription unit)。RNA聚合酶合成RNA时不需引物,但无校正功能。
遗传信息从DNA到 RNA的转移。即以双链DNA中的一条链为模板,以4种核苷三磷酸:腺三磷(ATP)、胞三磷(CTP)、鸟三磷(GTP)和尿三磷(UTP)为原料,在RNA聚合酶催化下合成RNA的过程。
被选为模板的单链叫模板链,又称信息链,无义链。另一条单链叫非模板链
DNA: ATCGAATCG (将此为非模板链) TAGCTTAGC(将此为模板链) 转录出的mRNA:AUCGAAUCG(可看出只是将非模板链的T改为U,所以模板链又叫无义链。这也是中心法则和碱基互补配对原则的体现。)
以RNA链为模板,经逆转录酶(即依赖于RNA的DNA聚合酶)催化合成DNA链,叫做逆转录。这种机制在RNA肿瘤病毒中首先发现。
在转录过程中,DNA模板被转录方向是从3′端向5′端;RNA链的合成方向是从5′端向3′端。RNA的合成一般分两步,第一步合成原始转录产物(过程包括转录的启动、延伸和终止);第二步转录产物的后加工,使无生物活性的原始转录产物转变成有生物功能的成熟 RNA。但原核生物mRNA的原始转录产物一般不需后加工就能直接作为翻译蛋白质的模板。
RNA聚合酶 以DNA为模板的 RNA聚合酶,也称转录酶。
原核生物的RNA聚合酶分子量很大,通常由5个亚基组成;σ,β,β′和两个α亚基,可写作α2ββ′σ。含有5个亚基的酶叫全酶,失去σ亚基的叫核心酶(α2ββ′)。核心酶也能催化RNA的合成,但没有固定的起始点,也不能区分双链DNA的信息链与非信息链。σ亚基能识别模板上的信息链和启动子,因而保证转录能从固定的正确位置开始。β和β′亚基参与和DNA链的结合。
真核生物RNA聚合酶有3类(不包括真核细胞线粒体中类似原核的RNA聚合酶,由8~12条亚基组成,分子量高达80万。初步的研究指出,它们也可能存在类似原核的σ亚基组分。
转录过程 包括启动、延伸和终止。
启动 RNA聚合酶正确识别DNA模板上的启动子并形成由酶、DNA和核苷三磷酸(NTP)构成的三元起始复合物,转录即自此开始。DNA模板上的启动区域常含有TATAATG顺序,称普里布诺(Pribnow)盒或P盒。复合物中的核苷三磷酸一般为GTP,少数为ATP,因而原始转录产物的5′端通常为三磷酸鸟苷(pppG)或腺苷三磷酸(pppA)。真核 DNA上的转录启动区域也有类似原核DNA的启动区结构,和在-30bp(即在酶和 DNA结合点的上游30核苷酸处,常以—30表示,bp为碱基对的简写)附近也含有TATA结构,称霍格内斯(Hogness)盒或 TATA盒。第一个核苷三磷酸与第二个核苷三磷酸缩合生成3′-5′磷酸二酯键后,则启动阶段结束,进入延伸阶段。
延伸 σ亚基脱离酶分子,留下的核心酶与 DNA的结合变松,因而较容易继续往前移动。核心酶无模板专一性,能转录模板上的任何顺序,包括在转录后加工时待切除的居间顺序。脱离核心酶的σ亚基还可与另外的核心酶结合,参与另一转录过程。随着转录不断延伸,DNA双链顺次地被打开,并接受新来的碱基配对,合成新的磷酸二酯键后,核心酶向前移去,已使用过的模板重新关闭起来,恢复原来的双链结构。一般合成的 RNA链对DNA模板具有高度的忠实性。RNA合成的速度,原核为25~50个核苷酸/秒,真核为45~100个核苷酸/秒。
终止 转录的终止包括停止延伸及释放 RNA聚合酶和合成的 RNA。在原核生物基因或操纵子的末端通常有一段终止序列即终止子; RNA合成就在这里终止。原核细胞转录终止需要一种终止因子ρ(四个亚基构成的蛋白质)的帮助。真核生物 DNA上也可能有转录终止的信号。已知真核DNA转录单元的3′端均含富有AT的序列〔如AATAA(A)或ATTAA(A)等〕,在相隔 0~30bp之后又出现TTTT顺序(通常是3~5个T),这些结构可能与转录终止或者与3′端添加多聚A顺序有关。
转录的调节控制 是基因表达调节控制中的一个重要环节。促进基因转录叫正调节,抑制基因转录叫负调节。
在原核生物方面1961年F.雅各布和J.莫诺提出的操纵子学说,得到许多人的验证和充实。操纵子通常的调控方式为:①诱导和阻遏作用;②环腺苷酸(cAMP)和降解物活化蛋白(CAP)的调节作用; ③弱化作用。
对真核细胞基因转录的调节控制目前知道得很少。同种高等生物每个个体的各个体细胞都有全套相同的基因,只是由于在发育过程中基因表达的调节控制(包括转录的调节控制)不同,因而发育成各种不同的组织和器官。目前认为,动物(包括人)都含有癌基因,但有的致癌,有的则不致癌,这也可能是由于转录与翻译的调控不同。另外,真核DNA中的结构基因只占总量的10%左右,大部分 DNA顺序都可能起调节控制作用。真核生物也有诱导酶和诱导蛋白质,如干扰素就是由病毒或双链RNA等诱导产生的一种蛋白质。
转录抑制剂 转录能被一些特异性的抑制剂抑制,有些抑制剂是治疗某些疾病的药物,有的则是研究转录机理的重要试剂。按照作用机理的不同,转录抑制剂分为两大类。第一类抑制剂特异性地与 DNA链结合,抑制模板的活性,使转录不能进行。这类抑制剂同时抑制DNA复制,例如:放线菌素D、纺锤菌素、远霉素、溴乙锭和黄曲霉素等。第二类抑制剂作用于RNA聚合酶,使RNA聚合酶的活性改变或丧失,从而抑制转录的进行。这类抑制剂只抑制转录,不影响复制,是研究转录机制和RNA聚合酶性质的重要工具,例如:利福平。
真核生物RNA的转录与原核生物RNA的转录过程在总体上基本相同,但是,其过程要复杂得多,主要有以下几点不同
⒈真核生物RNA的转录是在细胞核内进行的,而蛋白质的合成则是在细胞质内进行的。所以,RNA转录后首先必须从核内运输到细胞质内,才能指导蛋白质的合成。
⒉真核生物一个mRNA分子一般只含有一个基因,原核生物的一个mRNA分子通常含有多个基因,而除少数较低等真核生物外,一个mRNA分子一般只含有一个基因,编码一条多肽链。
⒊真核生物RNA聚合酶较多 在原核生物中只有一种RNA聚合酶,催化所有RNA的合成,而在真核生物中则有RNA聚合酶Ⅰ、RNA聚合酶Ⅱ和RNA聚合酶Ⅲ三种不同酶,分别催化不同种类型RNA的合成。三种RNA聚合酶都是由10个以上亚基组成的复合酶。RNA聚合酶Ⅰ存在于细胞核内,催化合成除5SrRNA以外的所有rRNA的合成;RNA聚合酶Ⅱ催化合成mRNA前体,即不均一核RNA(hnRNA)的合成;RNA聚合酶Ⅲ催化tRNA和小核RNA的合成。
⒋真核生物RNA聚合酶不能独立转录RNA 。原核生物中RNA聚合酶可以直接起始转录合成RNA ,真核生物则不能。在真核生物中,三种RNA聚合酶都必须在蛋白质转录因子的协助下才能进行RNA的转录。另外,RNA聚合酶对转录启动子的识别,也比原核生物更加复杂,如对RNA聚合酶Ⅱ来说,至少有三个DNA的保守序列与其转录的起始有关,第一个称为TATA框(TATA box),具有共有序列TATAAAA,其位置在转录起始点的上游约为25个核苷酸处,它的作用可能与原核生物中的-10共有序列相似,与转录起始位置的确定有关。第二个共有序列称为CCAAT框(CCAAT box),具有共有序列GGAACCTCT,位于转录起始位置上游约为50-500个核苷酸处。如果该序列缺失会极大地降低生物的活体转录水平。第三个区域一般称为增强子(enhancer),其位置可以在转录起始位置的上游,也可以在下游或者在基因之内。它虽不直接与转录复合体结合,但可以显著提高转录效率。
简述甲基化抑制基因转录的机理?
在特异性表达某些基因的组织中,活化基因附近mCpG较非表达组织中明显降低至30%左右。同时,有Hl的压缩状态核小体中含有哺乳动物细胞核DNA中80%的甲基化CpG。因此认为基因表达与CG甲基化程度呈负相关。
C的甲基化可能加强阻遏蛋白或降低激活蛋白与DNA的结合,或因mCpG的甲基伸入DNA双螺旋结构的大沟,影响DNA与结合蛋白的相互作用;
也可能由于C的甲基化使DNA双螺旋大沟中过分拥挤从而改变了DNA不同构象间的平衡,更多地由B-DNA变为其他(如Z-DNA)构象以扩展大沟内的空间,影响了DNA结合蛋白对相应专一序列的结合。
由于Z-DNA结构收缩,螺旋加深,使许多蛋白质因子赖以结合的元件收缩入大沟而不利于基因转录的起始。
用序列相同但甲基化水平不同的DNA为材料进行实验,发现甲基的引入不利于模板与RNA聚合酶的结合,降低了其体外转录活性。
DNA甲基化对转录的抑制主要决定于甲基化CpG的密度和启动子强度两个因素:
启动子附近甲基化CpG的密度是阻遏作用的主要决定因素。
弱的启动子可被散布的甲基化CpG完全阻遏,若外加增强子使启动子强化,则在同样程度的甲基化影响下转录可以恢复;
如果甲基化CpG位点进一步增加,转录就会完全停止。
阻遏的严重程度与甲基化CpG区对MeCP1(methylCpG-bindingprotein1)的亲和力成正比。
可见在转录的充分激活和完全阻遏之间的调节开关决定于甲基化CpG密度和启动子强度的平衡。
数字式音响转录设备的原理
首先来说一下UX-WD700的功能,它可以播放的盘片类型相当多,DVD、VCD、CD、CD-RW、MD这些盘片它都可以读取,还可以播放传统的磁带和接收广播,而且它还可以在其中的一部分盘片介质上写入要录制的歌曲。比如它有两个MD插入口,你可以将自己喜欢的碟片放在左边,然后把一张空白的放在右边,按下录制键,UX-WD700会帮你进行转录,也就是我们通常说的翻录一张。如果你觉得以前翻录的时候时间很长,那么UX-WD700为你考虑的很周到,它可以帮你进行2倍速度的翻录,时间缩短一半,很不错的功能吧。在你选择从CD盘片录制歌曲到MD碟片上时,UX-WD700更能提供惊人的5倍速翻录功能,使您的等待时间大大减短。具体的说这个机器就是个翻录专家,它可以在各个不同的介质之间进行转录,从这张图片介绍上我们就能看得明明白白。