永道无线射频标签(扬州)有限公司怎么样?
简介:永道无线射频标签(扬州)有限公司于2004年06月11日在扬州经济技术开发区市场监督管理局登记成立.法定代表人何奕达,公司经营范围包括从事无线射频智能辨识系统(RFID)之各项软硬件设计等. 法定代表人:何奕达 成立时间:2004-06-11 注册资本:19429万人民币 工商注册号:321000400007023 企业类型:有限责任公司(台港澳与境内合资) 公司地址:扬州市吴州东路88号
什么是RFID,RFID电子标签工作原理与应用介绍
其核心是采用了RFID射频识别技术、存储容量较小的芯片。下面展开讲一下。对电子标签的描述 1、电子标签的特性
数据存储:与传统形式的标签相比,容量更大(1bit—1024bit),数据可随时更新,可读写。
读写速度:与条码相比,无须直线对准扫描,读写速度更快,可多目标识别、运动识别。
使用方便:体积小,容易封装,可以嵌入产品内。
安全:专用芯片、序列号惟一、很难复制。
耐用:无机械故障、寿命长、抗恶劣环境。
2、技术原理
典型的RFID系统由电子标签(Tag)、读写器(Read/Write Device)以及数据交换、管理系统等组成。电子标签也称射频卡,它具有智能读写及加密通信的能力。读写器由无线收发模块、天线、控制模块及接口电路等组成。电子标签内不含电池,电子标签工作的能量是由读写器发出的射频脉冲提供。电子标签接收射频脉冲,整流并给电容充电。电容电压经过稳压后作为工作电压。数据解调部分从接收到的射频脉冲中解调出数据并送到控制逻辑。控制逻辑接受指令完成存储、发送数据或其它操作。EEPROM用来存储电子标签的ID号及其它用户数据。还有一种有源RFID系统,是由电池供电,可以在较高频段工作,识别距离较长,和读写器之间的通信速率也较高。
RFID系统根据工作频率的不同分为低频、中频及高频系统。低频系统一般工作在100k~500kHz,中频系统工作在10MHz~15MHz左右,它们主要适用于识别距离短、成本低的应用中;而高频系统则可达850~950MHz及2.4~5GHz的微波段,适用于识别距离长,数据读写率高的场合。
3、识别技术的比较
就条码、磁卡、IC卡、RFID等识别技术来说,它们都有各自的特点及适于应用的场合。下表列出了几种识别技术的特点与区别。
4、电子标签与条码相比的优势
即使看不见也可以方便地读写;可以在多种复杂环境中工作;可以容易地以不同形式嵌入或者附着在不同的产品上;更远的读写距离,三维的读写方式;更大的存储容量;有密钥保护,更安全,不易伪造。电子标签的应用 电子标签作为数据载体,能起到标识识别、物品跟踪、信息采集的作用。在国外,电子标签已经在广泛的领域内得以应用。
电子标签、读写器、天线和应用软件构成的RFID系统直接与相应的管理信息系统相连。每一件物品都可以被准确地跟踪,这种全面的信息管理系统能为客户带来诸多的利益,包括实时数据的采集、安全的数据存取通道、离线状态下就可以获得所有产品信息等等。在国外,RFID技术已被广泛应用于诸如工业自动化、商业自动化等众多领域。应用范围包括:1、防伪(电子版以下略)通过扫描,详尽的物流记录就生成了。
(1)生产流水线管理
电子标签在生产流水线上可以方便准确地记录工序信息和工艺操作信息,满足柔性化生产需求。对工人工号、时间、操作、质检结果的记录,可以完全实现生产的可追溯性。还可避免生产环境中手写、眼看信息造成的失误。
(2)仓储管理
将RFID系统用于智能仓库货物管理,有效地解决了仓储货物信息管理。对于大型仓储基地来说,管理中心可以实时了解货物位置、货物存储的情况,对于提高仓储效率、反馈产品信息、指导生产都有很重要的意义。它不但增加了一天内处理货物的件数,还可以监看货物的一切信息。其中应用的形式多种多样,可以将标签贴在货物上,由叉车上的读写器和仓库相应位置上的读写器读写;也可以将条码和电子标签配合使用。
(3)销售渠道管理
建立严格而有序的渠道,高效地管理好进销存是许多企业的强烈需要。产品在生产过程中嵌入电子标签,其中包含惟一的产品号,厂家可以用识别器监控产品的流向,批发商、零售商可以用厂家提供的读写器来识别产品的合法性。
3、贵重物品管理
还可用于照相机、摄像机、便携电脑、CD随身听、珠宝等。贵重物品的防盗、结算、售后保证。其防盗功能属于电子物品监视系统(EAS)的一种。标签可以附着或内置于物品包装内。专门的货架扫描器会对货品实时扫描,得到实时存货记录。如果货品从货价上拿走,系统将验证此行为是否合法,如为非法取走货品,系统将报警。
买单出库时,不同类别的全部物品可通过扫描器,一次性完成扫描,在收银台生成销售单的同时解除防盗功能。这样,顾客带着所购物品离开时,警报就不会响了。在顾客付账时,收银台会将售出日期写入标签,这样顾客所购的物品也得到了相应的保证和承诺。
4、图书管理、租赁产品管理
在图书中贴入电子标签,可方便的接收图书信息,整理图书时不用移动图书,可提高工作效率,避免工作误差。
5、其他如物流、汽车防盗、航空包裹管理等。
RFID系统基本组成部分功能。
1、标签(Tag):由耦合元件及芯片组成,每个标签具有唯一的电子编码,附着在物体上标识目标对象
2、阅读器(Reader):读取(有时还可以写入)标签信息的设备,可设计为手持式或固定式;
3、天线(Antenna):在标签和读取器间传递射频信号。
RFID技术的基本工作原理并不复杂:标签进入磁场后,接收解读器发出的射频信号。
凭借感应电流所获得的能量发送出存储在芯片中的产品信息(Passive Tag,无源标签或被动标签),或者由标签主动发送某一频率的信号(Active Tag,有源标签或主动标签),解读器读取信息并解码后,送至中央信息系统进行有关数据处理。
扩展资料:
从电子标签到读写器之间的通信和能量感应方式来看,RFID系统一般可以分为电感耦合(磁耦合)系统和电磁反向散射耦合(电磁场耦合)系统。
电感耦合系统是通过空间高频交变磁场实现耦合,依据的是电磁感应定律;电磁反向散射耦合,即雷达原理模型,发射出去的电磁波碰到目标后反射,同时携带回目标信息,依据的是电磁波的空间传播规律。
电感耦合方式一般适合中、低频率工作的近距离RFID系统;电磁反向散射耦合方式一般适合高频、微波工作频率的远距离RFID系统。
参考资料来源:百度百科-RFID系统
何为RFID电子标签
钧普电子标签对RFID电子标签全部解释说明如下:
射频识别,RFID(Radio Frequency Identification)技术,又称无线射频识别,是一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。
射频的话,一般是微波,1-100GHz,适用于短距离识别通信。
RFID读写器也分移动式的和固定式的,目前RFID技术应用很广,如:图书馆,门禁系统,食品安全溯源等。
无线电的信号是通过调成无线电频率的电磁场,把数据从附着在物品上的标签上传送出去,以自动辨识与追踪该物品。某些标签在识别时从识别器发出的电磁场中就可以得到能量,并不需要电池;也有标签本身拥有电源,并可以主动发出无线电波(调成无线电频率的电磁场)。标签包含了电子存储的信息,数米之内都可以识别。与条形码不同的是,射频标签不需要处在识别器视线之内,也可以嵌入被追踪物体之内。
许多行业都运用了射频识别技术。将标签附着在一辆正在生产中的汽车,厂方便可以追踪此车在生产线上的进度。仓库可以追踪药品的所在。射频标签也可以附于牲畜与宠物上,方便对牲畜与宠物的积极识别(积极识别意思是防止数只牲畜使用同一个身份)。射频识别的身份识别卡可以使员工得以进入锁住的建筑部分,汽车上的射频应答器也可以用来征收收费路段与停车场的费用。
某些射频标签附在衣物、个人财物上,甚至于植入人体之内。由于这项技术可能会在未经本人许可的情况下读取个人信息,这项技术也会有侵犯个人隐私忧患。
RFID电子标签电路组成及原理
一个完整超高频无源RFID标签由天线和标签芯片两部分组成,其中,标签芯片一般包括以下几部分电路:
– 电源恢复电路
– 电源稳压电路
– 反向散射调制电路
– 解调电路
– 时钟恢复/产生电路
– 启动信号产生电路
– 参考源产生电路
– 控制单元
– 存储器
电源恢复电路
电源恢复电路将RFID标签天线所接收到的超高频信号通过整流、升压等方式转换为直流电压,为芯片工作提供能量。
电源恢复电路具有多种可行的电路结构。如图2所示是目前常用的几种电源恢复电路[3][4]。
在这些电源恢复电路中,并不存在最理想的电路结构,每种电路都有各自的优点及缺陷[3]。在不同的负载情况、不同的输入电压情况、不同的输出电压要求以及可用的工艺条件下,需要选择不同的电路以使其达到最优的性能。图2(a)所示的多级二极管倍压电路,一般采用肖特基势垒二极管。它具有倍压效率高、输入信号幅度小的优点,应用十分广泛[5]。但是,一般代工厂的普通CMOS工艺不提供肖特基势垒二极管,在工艺的选择上会给设计者带来麻烦。图2(b)是用接成二极管形式的PMOS管来代替肖特基二极管,避免了工艺上的特殊要求。这种结构的倍压电路需要有较高的输入信号幅度,在输出电压较高时具有较好倍压效率。图2(c)是传统的二极管全波整流电路。与Dickson倍压电路相比,倍压效果更好,但引入了更多的二极管元件,功率转换效率一般略低于Dickson倍压电路。另外,由于它的天线输入端与芯片地分离,从天线输入端向芯片看去,是一个电容隔直的全对称结构,避免了芯片地与天线的相互影响,适合于与对称天线(例如偶极子天线)相接。图2(d)是许多文献提出的全波整流电路的CMOS管解决方案[4]。在工艺受限的情况下,可以获得较好的功率转换效率,并且对输入信号幅度的要求也相对较低[3]。 在一般的无源UHF RFID标签的应用中,出于成本的考虑,希望芯片电路适合于普通CMOS工艺的制造。而远距离读写的要求对电源恢复电路的功率转换效率提出了较高的要求。为此,很多设计者采用标准CMOS工艺来实现肖特基势垒二极管[6],从而可以方便地采用多级Dickson倍压电路结构来提高电源转换的性能[3]。图3所示是普通CMOS工艺制造的肖特基二极管结构示意图。在设计中,不需要更改工艺步骤和掩膜板生成规则,只需在版图上作一些修改,就可以制作出肖特基二极管。
图4所示是在UMC 0.18um CMOS工艺下设计的几种肖特基二极管的版图。它们的直流特性测试曲线如图5所示。从直流特性的测试结果上可以看到,标准CMOS工艺制造的肖特基二极管具有典型的二极管特性,并且开启电压只有0.2V左右,非常适合应用于RFID标签。
3 电源稳压电路
在输入信号幅度较高时,电源稳压电路必须能保证输出的直流电源电压不超过芯片所能承受的最高电压;同时,在输入信号较小时,稳压电路所消耗的功率要尽量的小,以减小芯片的总功耗。
从稳压原理上看,稳压电路结构可以分为并联式稳压电路和串联式稳压电路两种。并联式稳压电路的基本原理如图6所示。
在RFID标签芯片中,需要有一个较大电容值的储能电容存储足够的电荷以供标签在接收调制信号时,仍可在输入能量较小的时刻(例如OOK调制中无载波发出的时刻),维持芯片的电源电压。如果输入能量过高,电源电压升高到一定程度,稳压电路中电压感应器将控制泄流源将储能电容上的多余电荷释放掉,以此达到稳压的目的。图7是其中一种并联型稳压电路。三个串联的二极管D1、D2、D3与电阻R1组成电压感应器,控制泄流管M1的栅极电压。当电源电压超过三个二极管开启电压之和后,M1栅极电压升高,M1导通,开始对储能电容C1放电。
另外一类稳压电路的原理则是采用串联式的稳压方案。它的原理图如图8所示。基准电压源是被设计成一个与电源电压无关的参考源。输出电源电压经电阻分压后与基准电压相比较,通过运算放大器放大其差值来控制M1管的栅极电位,使得输出电压与参考源基本保持相同的稳定状态。
这种串联型稳压电路可以输出较为准确的电源电压,但是由于M1管串联在未稳压电源与稳压电源之间,在负载电流较大时,M1管上的压降会造成较高的功耗损失。因此,这种电路结构一般应用于功耗较小的标签电路中。
4 调制与解调电路
A.解调电路
出于减小芯片面积和功耗的考虑,目前大部分无源RFID标签均采用了ASK调制。对于标签芯片的ASK解调电路,常用的解调方式是包络检波的方式,如图9所示[1]。
包络检波部分与电源恢复部分的倍压电路基本相同,但是不必提供大的负载电流。在包络检波电路的末级并联一个泄电流源。当输入信号被调制时,输入能量减小,泄流源将包络输出电压降低,从而使得后面的比较器电路判断出调制信号。由于输入射频信号的能量变化范围较大,泄流源的电流大小必须能够动态的进行调整,以适应近场、远场不同场强的变化。例如,如果泄流电源的电流较小,在场强较弱时,可以满足比较器的需要,但是当标签处于场强很强的近场时,泄放的电流将不足以使得检波后的信号产生较大的幅度变化,后级比较器无法正常工作。
在输入载波未受调制时,泄流管M1的栅极电位与漏极电位相同,形成一个二极管接法的NMOS管,将包络输出钳位在M1的阈值电压附近,此时输入功率与在M1上消耗的功率相平衡;当输入载波受调制后,芯片输入能量减小,而此时由于延时电路R1、C1的作用,M1的栅极电位仍然保持在原有电平上,M1上泄放的电流仍保持不变,这就使得包络输出信号幅度迅速减小;同样,在载波恢复后,R1和C1的延时使得包络输出可以迅速回复到原有高电平。采用这种电路结构,并通过合理选择R1、C1的大小以及M1的尺寸,即可满足在不同场强下解调的需要。
包络输出后面所接的比较器电路也有多种可以选择的方案,常用的有迟滞比较器、运算放大器等。也可以简化为用反相器来实现。
B.调制电路
无源UHF RFID标签一般采用反向散射的调制方法,即通过改变芯片输入阻抗来改变芯片与天线间的反射系数,从而达到调制的目的。一般设计天线阻抗与芯片输入阻抗使其在未调制时接近功率匹配,而在调制时,使其反射系数增加。常用的反向散射方法是在天线的两个输入端间并联一个接有开关的电容,如图11所示,调制信号通过控制开关的开启,决定了电容是否接入芯片输入端,从而改变了芯片的输入阻抗。 5 启动信号产生电路
电源启动复位信号产生电路在RFID标签中的作用是在电源恢复完成后,为数字电路的启动工作提供复位信号。它的设计必须要考虑以下几点问题[7]:
– 如果电源电压上升时间过长,会使得复位信号的高电平幅度较低,达不到数字电路复位的需要;
– 启动信号产生电路对电源的波动比较敏感,有可能因此产生误动作;
– 静态功耗必须尽可能的低。
通常,无源RFID标签进入场区后,电源电压上升的时间并不确定,有可能很长。这就要求设计的启动信号产生电路产生启动信号的时刻与电源电压相关。图12所示是一种常见的启动信号产生电路[8]。
它的基本原理是利用电阻R0和NMOS管M1组成的支路产生一个相对固定的电压Va,当电源电压vdd超过NMOS管的阈值电压后,Va电压基本保持不变。随着vdd的继续升高,当电源电压达到Va+|Vtp|时,PMOS管M0导通使得Vb升高,而此前由于M0截止,Vb一直处于低电平。
这种电路的主要问题是存在着静态功耗。并且由于CMOS工艺下MOS管的阈值电压随工艺的变化比较大,容易受工艺偏差的影响。因此,利用pn结二极管作启动电压的产生会大大减小工艺的不确定性,如图13所示。
当VDD上升到两个pn结二极管的开启电压之前,PMOS管M0栅极与电源电压相等,PMOS管关断,此时电容C1上的电压为低电平。当VDD 上升到超过两个二极管阈值电压后,M0开始导通,而M1栅极电压保持不变,流过M1的电流保持不变,电容C1上电压逐渐升高,当其升高到反相器发生翻转后,就产生了启动信号。因此,这种电路产生启动信号的时间取决于电源电压是否达到两个二极管的阈值电压,具有较高的稳定性,避免了一般启动电路在电源电压上升过慢时,会导致开启信号出现过早的问题。
如果电源电压上升的时间过快,电阻R1和M0的栅电容构成了低通延时电路,会使得M0的栅极电压不能迅速跟上电源电压的变化,仍然维持在低电平上,这时M0就会对电容C1充电,导致电路不能正确工作。为解决这一问题,引入电容C5。如果电源电压上升速度很快,电容C5的耦合作用能够使得M0的栅极电位保持与电源电压一致,避免了上述问题的发生。
该电路仍然存在的静态功耗的问题,可以通过增大电阻值,合理选择MOS管尺寸来降低静态功耗的影响。要想完全解决静态功耗的问题则需要设计额外的反馈控制电路,在启动信号产生后关断这部分电路。但是,需要特别注意引入反馈后产生的不稳定态的问题[7]。
什么是RFID?
RFID基础知识
1.什么是RFID
RFID是Radio Frequency Identification的缩写,即射频识别。常称为感应式电子芯片或近接卡、感应卡、非接触卡、电子标签、电子条码等等。一套完整 RFID系统由Reader与Transponder两部份组成,其动作原理为由Reader发射一特定频率之无限电波能量给Transponder,用以驱动Transponder电路将内部之ID C刷卡故不怕脏污,且芯片密码为世界唯一无法复制,安全性高、长寿命。
RFID的应用非常广泛,目前典型应用有动物芯片、汽车芯片防盗器、门禁管制、停车场管制、生产线自动化、物料管理。RFID标签有两种:有源标签和无源标签。
2.什么是电子标签
电子标签即为RFID,有的称为射频标签、射频识别。它是一种非接触式的自动识别技ode送出,此时Reader便接收此ID Code。Transponder的特殊在于免用电池、免接触、免术,通过射频信号识别目标对象并获取相关数据,识别工作无须人工干预,作为条形码的无线版本,RFID技术具有条形码所不具备的防水、防磁、耐高温、使用寿命长、读取距离大、标签上数据可以加密、存储数据容量更大、存储信息更改自如等优点。
3.什么是RFID技术
RFID射频识别是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无须人工干预,可工作于各种恶劣环境。RFID技术可识别高速运动物体并可同时识别多个标签,操作快捷方便。
短距离射频产品不怕油渍、灰尘污染等恶劣的环境,可在这样的环境中替代条码,例如用在工厂的流水线上跟踪物体。
长距射频产品多用于交通上,识别距离可达几十米,如自动收费或识别车辆身份等。
4.什么是RFID解决方案
RFID解决方案是RFID技术供应商针对行业发展特点制定的RFID应用方案,可根据不同企业的实际要求“量身定做”。 RFID解决方案可按照行业进行分类,物流、防伪防盗、身份识别、资产管理、动物管理、快捷支付等等。
5. 什么是RFID中间件
RFID产业潜力无穷,应用的范围遍及制造、物流、医疗、运输、零售、国防等等。Gartner Group认为,RFID是2005年建议企业可考虑引入的十大策略技术之一,然而其成功的关键除了标签(Tag)的价格、天线的设计、波段的标准化、设备的认证之外,最重要的是要有关键的应用软件(Killer Application),才能迅速推广。而中间件(Middleware)可称为是RFID运作的中枢,因为它可以加速关键应用的问世。
6.RFID系统的基本组成部分
最基本的RFID系统由三部分组成:
标签(Tag):由耦合组件及芯片组成,每个标签具有唯一的电子编码,附着在物体上标识目标对象;
阅读器(Reader):读取(有时还可以写入)标签信息的设备,可设计为手持式或固定式;
天线(Antenna):在标签和读取器间传递射频信号。
请问什么是RFID智能标签
RFID是Radio Frequency Identification的缩写,即射频识别。常称为感应式电子芯片或感应卡、非接触式卡、电子标签、电子条码,等等。
一套完整 RFID系统由读写器(Reader)与电子标签(Transponder)两部份组成 ,其工作原理为由读写器(Reader)发射一特定频率之无线电波能量给电子标签(Transponder),用以驱动电子标签(Transponder)电路将内部之ID Code(即全球唯一编号和数据)送出,此时读写器(Reader)便接收此ID Code。 电子标签(Transponder)的特殊在于免用电池、免接触、免刷卡故不怕脏污、长寿命,且芯片密码为世界唯一无法复制,安全性高防伪技术强。
RFID的应用非常广泛,目前典型应用有会员卡、公交卡、动物管理、食品药品防伪溯源、停车场及高速收费、门禁考勤、电力设备资产巡检、生产线自动化、物料管理等。
有知道RFID电子标签是什么的吗?现在有哪些企业在运用?
射频识别即RFID(Radio Frequency IDentification)技术,又称电子标签、无线射频识别,是一种无线通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。常用的有低频(125k、134.2K)、高频(13.56Mhz)、超高频(860-960Mhz),有源(2.4Ghz、5.8Ghz)等技术。
•目前的技术使RFID标签芯片小到1/50米粒大小,量产1亿个单位成本低至5美分,国内超高频的10万级别也到了0.5RMB以下。
•电子标签芯片是RFID系统真正的数据载体。包含全球唯一的电子编码信息。它由过渡期的64/96/128位编码,未来可至256位,512位。
•还有用户信息存储区域,低频一般是64bits-1Kbits,高频一般有512bit-64Kbits,超高频一般32bits-2048bits。
RFID电子标签主要用于物联网,物联网是现在国家支持的行业 是否可以投资您自己决定
射频识别系统
公交IC卡. 门禁卡. 巡逻棒. 都属于射频识别的典型应用.
什么是rfid电子标签技术?
RFID射频识别是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无须人工干预,可工作于各种恶劣环境.RFID技术可识别高速运动物体并可同时识别多个标签, 操作快捷方便.