滑翔机的工作原理?
顶 了
滑翔机的原理是什么?
一、悬挂式滑翔机的原理是利用从山坡上俯冲,靠空气的升力使滑翔机起飞.靠左右手的控制改变方向. 二、但一般说滑翔机不是指上面的那种,而是外形像飞机的滑翔机.滑翔机升空必须以升力克服重力,以推力克服空气阻力才能飞行.滑翔机产生升力的关键是靠机翼上截面凸起的形状,上方流动的空气因比下方的空气流动得快,气压比下方低.下方较高的气压就将飞机支撑起来浮在空气中.
滑翔机是怎麽飞起来的
滑翔机无动力装置,利用飞机拉起来后靠自身重力空气阻力作用飞翔,飞行员可挪动重心控制俯仰,方向,倾斜度,操作方便
滑翔机是怎样起飞的
一、悬挂式滑翔机的原理如一楼所述,是利用从山坡上俯冲,靠空气的升力使滑翔机起飞。靠左右手的控制改变方向。
二、但一般说滑翔机不是指上面的那种,而是外形像飞机的滑翔机。滑翔机升空必须以升力克服重力,以推力克服空气阻力才能飞行。滑翔机产生升力是藉著机翼截面拱起的形状,当空气流经机翼时,上方的空气分子因在同一时间内要走的距离较长,所以比下方的空气分子流动的快,造成在机翼上方的气压会较下方低。如此,下方较高的气压就将飞机支撑著,而能浮在空气中。这就是所谓的伯努利(十八世纪荷兰出生,后来移居瑞士的数学与科学家)原理。
根据伯努利原理,滑翔机速度愈快,所产生的气压差(也就是升力)就会愈大,升力大过重於重力,飞机就会向上窜升。滑翔机没有引擎的动力,它可以靠四种方式升空:(1)弹射器— 将滑翔机架设在弹力绳并向后拉,由驾驶员给予讯号后释放绳索而弹射出去。(2)汽车拖曳— 将滑翔机系绳於车上拖曳达适当高度后,驾驶员将绳索松开。(3)绞车拖曳— 与汽车拖曳相似,只是利用固定在地上以马达驱动的绞车来拉滑翔机。(4)飞机拖曳— 以另一部有动力的飞机拖至一定的高度后,滑翔机脱离而自由翱翔。
滑翔机升空后,除非碰到上升气流,否则空气阻力会逐渐减缓飞机的速度,升力就会愈来愈小,重力大於升力,飞机就会愈飞愈低,最后降落至地面。为了让滑翔机能飞得又远又久,它必需有很高的升力阻力比,这就是为什麼滑翔机的机翼那麼细长,如何突破滞空时间以及飞行高度的纪录是滑翔机设计与制造的最大挑战。滑翔是一种需要高度技巧与飞行知识,藉著自然能量遨游天空的运动。
升降舵是用驾驶杆操控的。当驾驶杆向后扳,升降舵上摆,机头朝上;驾驶杆向前推时,升降舵下摆,机头朝下。
方向舵是利用脚踏板来控制的。飞行员踩下左脚踏板时,方向舵向左摆,机头左转;踩下右脚踏板,方向舵向右摆,机头就右转。仅仅操纵方向舵只能改变滑翔机的位置,不能使滑翔机转弯。滑翔机有很强的直线飞行惯性(牛顿第一定律),转动方向舵会引起侧向滑行,就像开快车急弯时的感觉一样,急弯路面通常会倾斜以防止车子打滑侧行,但是滑翔机在空中是自由的,要使滑翔机转弯而不侧滑,必须同时操纵副翼(使用驾驶杆)与垂直舵(使用脚踏板)。英文叫做bank,倾斜转弯。
举例:滑翔机用绞盘车起飞
一般要选择在飞机场进行,在滑翔机正前方1000米的地方放置有一架绞盘车(电动绞盘,类似于水井打水用的辘轳),一条钢缆绳的两端分别固定在绞盘车和滑翔机上,当滑翔机要起飞时,合闸通电,使绞盘车快速旋转,缆绳被卷起来,并越来越短,带动滑翔机在地上飞驰。当滑翔机达到一定的速度后,具备了升空的条件,固定机翼本身是上凸下平的流线型,在高速下由于这种机翼的上面压力低,下面压力高,产生升力,滑翔机开始上升;为了使上升加快,驾驶员同时把操纵杆向怀里轻轻拉动(术语称拉杆或抱杆),使活动机翼上翘,机头很快抬起,飞向天空。当滑翔机飞到绞盘车的上方时,大约500米左右,要立即把挂在机头上的缆绳甩掉(术语称脱钩),滑翔机就可以自由地飞翔了,但总的是下降的趋势(碰到上升气流的机会较少),所以要掌握好飞行路线,准确着陆,这就要靠经验和驾驶水平了。
http://www.me.ntu.edu.tw/~ifplab/airplane/fly/fly5.htm
无动力滑翔翼的飞行原理
下滑加速,上升减速. 滑翔机借助大展弦比机翼,遇山地上升气流则盘旋上升,因此驾驶员需要具备寻找合适气流的经验. 大展弦比机翼具有升阻比高的特点,具有非常好的气动特性.
滑翔伞的飞行原理是什么?
一、滑翔伞飞行时的受力情况
滑翔伞能够在空中飞行,是当它的翼型伞衣与空气作相对运动时,由于空气的作用在伞衣上产生空气动力的缘故。我们可以看一下滑翔伞在静止空气中作稳定滑翔时的受力情况。此时伞衣上垂直向上的空气动力R与垂直向下的系统的总重量W(飞行员、滑翔伞及所有装备重量之息和)相平衡,滑翔伞沿着向下倾斜的轨迹作等速直线运动。
由于空气动力R和重力W均为矢量,所以我们可以将它们按平行四边形法则进行分解。气动力R可以分解为与滑翔轨迹相垂直的升力Y和与滑翔轨迹相平行的阻力。同理,重力W也可以分解为w1和w2两个分力。此时作用在伞衣上的所有力仍然是平衡的,即Y=w1:Q=w2。由此可见,升力Y平衡重力分力w1,而使我们能够支持在空中;而重力W2则平衡阻力Q,使滑翔伞在空中沿飞行轨迹作等速下滑运动。如果空气动力R与重力W不相平衡,则滑翔伞在空中就将作加速(或减速)运动,使R与W达到新的平衡为止。由于飞行中重力W是滑翔伞系统所固有的,所以空气动力R是随速度而变化的。
二、升力的产生
翼型伞衣在充气后的横截面,即翼型相对于气流运动的情况。
当气流绕过翼型上、下表面流动时,由于上翼面弯度大、下翼面弯度小(基本为直线),并与气流方向有一定的角度。根据流体连续性原理和伯努里定理,稳定流动的气流流过上翼面时,受拱起的上翼面挤压作用,流线变密,流速比远前方的气流速度大,故压力降低;而流过下翼面的气流,流线变疏、流速减慢,压力增大。因此在伞衣上、下表面出现压力差,这个压力差的合力即为空气作用于伞衣上的总空气动力R,其方面垂直向上垂直的分力,就是升力Y。决定翼型伞衣升力大小的因素主要有:气流速度、空气密度、伞衣面积、翼型和伞衣攻角等。
1.气流速度(V):速度是决定升力大小的一个重要因素,如果没有速度,即滑翔伞与空气没有相对运动,则伞衣上、下表面的压力差为零,所以也就不会产生升力。实验结果表明z在其他条件相同的情况下,升力大小与速度的平方成正比。为了提高与气流相对运动速度,通常滑翔伞都采用逆风起飞,以增大升力,缩短起飞助跑距离。
2.伞衣面积(S):升力由伞衣上;下压力差产生,所以理论上伞衣面积越大,升力也就越大。但由于滑翔伞伞衣由柔性的纺织材料制成,依靠冲压空气成形,出于结构上的原因既要保证充气刚性,又要保持一定的翼载荷以保证飞行性能,所以不能象刚性机翼那样做得太大。
3.空气密度(p):气流压力与密度成正比。密度增大时,升力也增加;密度减小时,升力也下降。
4.翼型:翼型不同,气流流过上、下表面的流线情况也不同。在一定范围内,翼型的弯度和厚度越大,引起上、下表面的压力差也大,故升力也越大。
5.攻角,也称迎角(α):在翼型确定之后,升力的大小取决于翼型与相对气流的角度。我们将翼型前缘与后缘用直线相连接,称为翼弦,通常用翼弦来计量各个角度。翼弦与相对气流(或滑翔飞行轨迹)之间的角度α,称之为攻角或迎角。
还有很多,请自己慢慢看下面的网址