跳至正文

滑翔机的原理,双翼滑翔机的原理

滑翔机的工作原理?

滑翔机的工作原理?

顶 了

马格鲁斯滑翔机原理

马格鲁斯滑翔机原理

其中的科学原理:

这个科技小制作的英文名称是“Magnus Glider”,翻译成“马格努斯滑翔机”。因为它利用了“马格努斯效应”。什么是“马格努斯效应”呢?

假设一个圆柱体平稳地向前飞行,那么气流会平稳地从它上下流过,对它只产生阻力,如下图1。如果这个圆柱体同时旋转,它的下表面运动方向与气流方向相反,上表面相同,就会造成圆柱体下表面空气流速低,上表面空气流速高。根据“伯努利定律”,就会产生向上的升力,如下图2。

一边旋转一边向前运动的圆柱体会受到空气的作用力,这就是马格努斯效应说明的内容。大家都知道足球运动里很著名的“香蕉球”,足球运动员把球旋转着踢出去,旋转的球受到空气的动力,会以一个弧线运动,就是这个原理的应用。同样在中国国球乒乓球运动中,也有“弧圈球”这项技术,我们不太熟悉的棒球运动中,也有类似的技术。

当然我们制作的这个“马格努斯滑翔机”不光利用了这种效应,里面还有“陀螺效应”,正是陀螺效应让它飞行的更平稳。另外杯子的形状,两个相对的圆锥形,也增加了它的稳定性。

滑翔机的原理是什么?

滑翔机的原理是什么?

一、悬挂式滑翔机的原理是利用从山坡上俯冲,靠空气的升力使滑翔机起飞.靠左右手的控制改变方向. 二、但一般说滑翔机不是指上面的那种,而是外形像飞机的滑翔机.滑翔机升空必须以升力克服重力,以推力克服空气阻力才能飞行.滑翔机产生升力的关键是靠机翼上截面凸起的形状,上方流动的空气因比下方的空气流动得快,气压比下方低.下方较高的气压就将飞机支撑起来浮在空气中.

滑翔机飞行的原理是什么?

飞机必须以升力克服重力,以推力克服空气阻力才能飞行。飞机产生升力是藉著机翼截面拱起的形状,当空气流经机翼时,上方的空气分子因在同一时间内要走的距离较长,所以跑得较下方的空气分子快,造成在机翼上方的气压会较下方低。如此,下方较高的气压就将飞机支撑著,而能浮在空气中。这就是所谓的伯努利(十八世纪荷兰出生,后来移居瑞士的数学与科学家)原理。

  根据伯努利原理,飞机速度愈快,所产生的气压差(也就是升力)就会愈大,升力大过重於重力,飞机就会向上窜升。滑翔机没有引擎的动力,它可以靠四种方式升空:(1)弹射器— 将滑翔机架设在弹力绳并向後拉,由驾驶员给予讯号後释放绳索而弹射出去。(2)汽车拖曳— 将滑翔机系绳於车上拖曳达适当高度後,驾驶员将绳索松开。(3)绞车拖曳— 与汽车拖曳相似,只是利用固定在地上以马达驱动的绞车来拉滑翔机。(4)飞机拖曳— 以另一部有动力的飞机拖至一定的高度后,滑翔机脱离而自由翱翔。

滑翔机升空后,除非碰到上升气流,否则空气阻力会逐渐减缓飞机的速度,升力就会愈来愈小,重力大於升力,飞机就会愈飞愈低,最後降落至地面。为了让滑翔机能飞得又远又久,它必需有很高的升力阻力比,这就是为什麼滑翔机的机翼那麼细长,如何突破滞空时间以及飞行高度的纪录是滑翔机设计与制造的最大挑战。滑翔是一种需要高度技巧与飞行知识,藉著自然能量遨游天空的运动。

无动力滑翔翼的飞行原理

下滑加速,上升减速. 滑翔机借助大展弦比机翼,遇山地上升气流则盘旋上升,因此驾驶员需要具备寻找合适气流的经验. 大展弦比机翼具有升阻比高的特点,具有非常好的气动特性.

滑翔机是怎样起飞的

一、悬挂式滑翔机的原理如一楼所述,是利用从山坡上俯冲,靠空气的升力使滑翔机起飞。靠左右手的控制改变方向。

二、但一般说滑翔机不是指上面的那种,而是外形像飞机的滑翔机。滑翔机升空必须以升力克服重力,以推力克服空气阻力才能飞行。滑翔机产生升力是藉著机翼截面拱起的形状,当空气流经机翼时,上方的空气分子因在同一时间内要走的距离较长,所以比下方的空气分子流动的快,造成在机翼上方的气压会较下方低。如此,下方较高的气压就将飞机支撑著,而能浮在空气中。这就是所谓的伯努利(十八世纪荷兰出生,后来移居瑞士的数学与科学家)原理。

根据伯努利原理,滑翔机速度愈快,所产生的气压差(也就是升力)就会愈大,升力大过重於重力,飞机就会向上窜升。滑翔机没有引擎的动力,它可以靠四种方式升空:(1)弹射器— 将滑翔机架设在弹力绳并向后拉,由驾驶员给予讯号后释放绳索而弹射出去。(2)汽车拖曳— 将滑翔机系绳於车上拖曳达适当高度后,驾驶员将绳索松开。(3)绞车拖曳— 与汽车拖曳相似,只是利用固定在地上以马达驱动的绞车来拉滑翔机。(4)飞机拖曳— 以另一部有动力的飞机拖至一定的高度后,滑翔机脱离而自由翱翔。

滑翔机升空后,除非碰到上升气流,否则空气阻力会逐渐减缓飞机的速度,升力就会愈来愈小,重力大於升力,飞机就会愈飞愈低,最后降落至地面。为了让滑翔机能飞得又远又久,它必需有很高的升力阻力比,这就是为什麼滑翔机的机翼那麼细长,如何突破滞空时间以及飞行高度的纪录是滑翔机设计与制造的最大挑战。滑翔是一种需要高度技巧与飞行知识,藉著自然能量遨游天空的运动。

升降舵是用驾驶杆操控的。当驾驶杆向后扳,升降舵上摆,机头朝上;驾驶杆向前推时,升降舵下摆,机头朝下。

方向舵是利用脚踏板来控制的。飞行员踩下左脚踏板时,方向舵向左摆,机头左转;踩下右脚踏板,方向舵向右摆,机头就右转。仅仅操纵方向舵只能改变滑翔机的位置,不能使滑翔机转弯。滑翔机有很强的直线飞行惯性(牛顿第一定律),转动方向舵会引起侧向滑行,就像开快车急弯时的感觉一样,急弯路面通常会倾斜以防止车子打滑侧行,但是滑翔机在空中是自由的,要使滑翔机转弯而不侧滑,必须同时操纵副翼(使用驾驶杆)与垂直舵(使用脚踏板)。英文叫做bank,倾斜转弯。

举例:滑翔机用绞盘车起飞

一般要选择在飞机场进行,在滑翔机正前方1000米的地方放置有一架绞盘车(电动绞盘,类似于水井打水用的辘轳),一条钢缆绳的两端分别固定在绞盘车和滑翔机上,当滑翔机要起飞时,合闸通电,使绞盘车快速旋转,缆绳被卷起来,并越来越短,带动滑翔机在地上飞驰。当滑翔机达到一定的速度后,具备了升空的条件,固定机翼本身是上凸下平的流线型,在高速下由于这种机翼的上面压力低,下面压力高,产生升力,滑翔机开始上升;为了使上升加快,驾驶员同时把操纵杆向怀里轻轻拉动(术语称拉杆或抱杆),使活动机翼上翘,机头很快抬起,飞向天空。当滑翔机飞到绞盘车的上方时,大约500米左右,要立即把挂在机头上的缆绳甩掉(术语称脱钩),滑翔机就可以自由地飞翔了,但总的是下降的趋势(碰到上升气流的机会较少),所以要掌握好飞行路线,准确着陆,这就要靠经验和驾驶水平了。

http://www.me.ntu.edu.tw/~ifplab/airplane/fly/fly5.htm

空气冲浪板原理,也就是室内滑翔机的原理

一、悬挂式滑翔机的原理是利用从山坡上俯冲,靠空气的升力使滑翔机起飞。靠左右手的控制改变方向。

二、室内滑翔机是外形像飞机的滑翔机。滑翔机升空必须以升力克服重力,以推力克服空气阻力才能飞行。滑翔机产生升力是藉著机翼截面拱起的形状,当空气流经机翼时,上方的空气分子因在同一时间内要走的距离较长,所以比下方的空气分子流动的快,造成在机翼上方的气压会较下方低。如此,下方较高的气压就将飞机支撑著,而能浮在空气中。这就是所谓的伯努利(十八世纪荷兰出生,后来移居瑞士的数学与科学家)原理。 根据伯努利原理,滑翔机速度愈快,所产生的气压差(也就是升力)就会愈大,升力大过重於重力,飞机就会向上窜升。滑翔机没有引擎的动力,它可以靠四种方式升空:(1)弹射器— 将滑翔机架设在弹力绳并向后拉,由驾驶员给予讯号后释放绳索而弹射出去。(2)汽车拖曳— 将滑翔机系绳於车上拖曳达适当高度后,驾驶员将绳索松开。(3)绞车拖曳— 与汽车拖曳相似,只是利用固定在地上以马达驱动的绞车来拉滑翔机。(4)飞机拖曳— 以另一部有动力的飞机拖至一定的高度后,滑翔机脱离而自由翱翔。

滑翔机升空后,除非碰到上升气流,否则空气阻力会逐渐减缓飞机的速度,升力就会愈来愈小,重力大於升力,飞机就会愈飞愈低,最后降落至地面。为了让滑翔机能飞得又远又久,它必需有很高的升力阻力比,这就是为什麼滑翔机的机翼那麼细长,如何突破滞空时间以及飞行高度的纪录是滑翔机设计与制造的最大挑战。滑翔是一种需要高度技巧与飞行知识,藉著自然能量遨游天空的运动。 升降舵是用驾驶杆操控的。当驾驶杆向后扳,升降舵上摆,机头朝上;驾驶杆向前推时,升降舵下摆,机头朝下。 方向舵是利用脚踏板来控制的。飞行员踩下左脚踏板时,方向舵向左摆,机头左转;踩下右脚踏板,方向舵向右摆,机头就右转。仅仅操纵方向舵只能改变滑翔机的位置,不能使滑翔机转弯。滑翔机有很强的直线飞行惯性(牛顿第一定律),转动方向舵会引起侧向滑行,就像开快车急弯时的感觉一样,急弯路面通常会倾斜以防止车子打滑侧行,但是滑翔机在空中是自由的,要使滑翔机转弯而不侧滑,必须同时操纵副翼(使用驾驶杆)与垂直舵(使用脚踏板)。英文叫做bank,倾斜转弯。